

USING PROGRAMMING WITH RURAL CHILDREN FOR

LEARNING TO THINK MATHEMATICALLY

Sanjeev Ranganathan, Bala Anand, Sundranandhan Kothandaraman, Vaidegi

Gunasekar

Aura Auro Design, SAIIER (Auroville, India), sanjeev@auraauro.com

Is it possible to use computer labs in a rural setting that encourages reasoning, visualization,

abstraction in children (as envisioned in NCF 2005) while at the same time addressing

curricular needs?

This paper addresses the question through the use of programming in two rural schools

including integration of curricular areas for fractions, cube roots, algebra, compound

interest, data handling, geometry, etc.

We explore three styles of instruction - projects for children to demonstrate their

understanding, challenges to visualize abstract concepts, and games created by children

themselves for mastery.

CONTEXT

We are presenting the work in two outreach schools of Auroville – Isai Ambalam School and

Udavi School- that cater to the villages of Annainagar, Edyanchavadi, Irumbai, Pooturai,

Pattannur, etc. We used existing computer facilities of the school, working with children on

Mathematics through programming.

These are rural schools and have demographics similar to government and NGO run schools

throughout the country. The schools believe in the holistic development of the child and

school managements are progressive and encourage experimentation and research. From

middle school onward much of the time is spent on academic subjects, in line with the

expectation of parents. Both the schools have computer facilities. In this sense too they are

typical, as over 75% of the secondary and higher secondary schools have computer facilities

(DISE, 2014).

Aura Auro Design is a team of four engineers who volunteer 3 hours a day at the schools. We

work with around 50 children from 6-8 grades along with their teachers. Classes range from 8

to 16 children. We are presenting the use of programming in this paper, however, we

complement programming with puzzles, and strategy games, building physical models and

TLM to create an environment of joyful mental exploration in the schools (Ranganathan,

2014).

Philosophies in learning

Constructivist Education Theory (Bruner, 1960) indicates that knowledge is not delivered into

the learner (whether child or adult) but recreated by the learner on his or her own. Children

actively construct their knowledge by connecting new knowledge to what they already know.

Constructivist education encourages discovery learning and learning by doing. It encourages

activities that challenge a child's worldview since conceptual change and deeper conceptual

learning come from experiential and interactive activities. Bruner further suggests “spiral

learning”, claiming that any subject could be introduced to any child at any age if it is in some

form that is honest.

3 1

mailto:sanjeev@auraauro.com

In India, Sri. Aurobindo (Aurobindo, 1910) indicates that nothing can be taught, but the

teacher can support and encourage a child in the process of learning, thus guiding them

towards perfection. More recently, Mukunda (Mukunda, 2009) describes the three aspects of

learning that are relevant to schools - conceptual knowledge, procedural knowledge and

higher order reasoning. Conceptual knowledge (and change), she states, greatly benefit from

constructivist approaches. In this paper we look at all three aspects of learning.

The Constructionism theory (Papert & Hare, 1991), adds to the constructivist theory the belief

that children construct their own knowledge best by creating something outside their minds

that is often sharable. In this research project, we explore creation in the virtual media through

computer programming.

The National Curricular Framework 2005 (Pal, et al., 2005) states that the 'useful' capabilities

relating to numeracy, number operations, measurements, decimals and percentages are only a

narrow goal of Mathematics education. Most middle schools across the country focus on

these narrow goals for better marks in examinations. Examinations presently test children

primarily on procedural learning: drill and rote learning become the primary tools for

education. The NCF 2005 points out that across the country children do not enjoy

Mathematics and are poor at applying these concepts or handling complexity.

The higher purpose of Mathematics, it says, is Mathematization: the understanding and

application of mathematics in different situations with a focus on abstraction, patient problem

solving and logical thinking. Meeting this goal requires a fundamental change in the approach

used in schools. It requires classrooms to move away from simplistic 'sums' to more complex

problem solving and contexts. It requires a shift in conversations in the classroom from the

'right answer' to considering and discovering approaches to problem solving. Our team thinks

of Mathematics in its wholeness, achieving higher goals while also meeting the narrow goals.

We also provide alternative ways for children to demonstrate their mastery of a subject

beyond examinations.

We believe that the teacher is not an instructor or taskmaster, but a helper and a guide

(Aurobindo, 1910). We believe that as teachers we should be aware of the situations when we

need to step in (technical difficulties – mouth down frustration) and when we need to step

back (struggle necessary for learning – mouth up frustration) (Martinez & Stager, 2012)

Programming and children learning

Use of programming to teach children Mathematics (Papert, 1986) happened before personal

computing had reached its peak. A programming language LOGO was created to help children

communicate with the computer and instruct a robotic “turtle” that could move and draw on

paper. The positive effects of programming on children's cognitive learning were also examined

(Pea & Kurland, 1984). A variety of hardware was made accessible to children to program

including cars and robots (Lego Mindstorms) and resulted in the Maker movement.

The Maker movement focuses on learning through inventing: making, tinkering and

engineering (Martinez & Stager, 2012). Making taps into the innate nature of human beings

to create and its active role in learning requires visualization of a 'product'. Tinkering is a

mindset – a playful approach to solving problems through experience, experimentation and

discovery. Engineering is the process of extracting the principles from experience and

organizing it to bridge intuition to formal learning, enabling better understanding and

prediction of results. We find all three aspects necessary in our research for a more

meaningful way of utilizing computers in school.

3 2

Programming Language and Setup

Scratch 2 (Resnick, et al. 2009) is an advanced visual programming language built beyond the

capabilities of LOGO. It has a low floor (easy to learn: you can stitch code together), high

ceiling (includes variables, functions and event driven simulation) and broad walls (allows for

users with different interests from drawing, music, animation, and computation). The

availability of such a program at no cost enabled us to use it with rural children who have

limited English skills to take up programming.

We used the Scratch 2 off-line editor to enable work without the internet. We installed public

domain OS Ubuntu 14.04. The OS and software(s) are available free of cost and offline and

the setup can be replicated in any computer center rural or urban across the country. We also

set up a local LAN to allow centralized storage of files. This allowed children to save and

continue their work from any machine. The complexity of the children's programs

significantly increased when they were assured that their work was saved and available.

Educational computation and children programming in India

In urban India there is a significant movement for children to learn programming beyond

school. Among younger children Scratch is a popular program. Computing availability in

rural India is limited and when computer facilities exist, they are rarely used beyond an hour

or two in a day in a school.

Progressive schools do introduce children to Scratch, sometimes as a creative medium for

animation and to develop higher level thinking. In Udavi School Scratch was already used by

children. With minimal guidance they had played and tinkered with example games.

USING PROGRAMMING WITH MATHEMATICAL CONCEPTS

We present these case studies of different aspects of children's learning through programming.

Cubes and cube roots

Pooja (8th grade) encounters cubes and cube roots; she often mistakes x3 (x multiplied by itself

three times) with 3x (x multiplied by three). For perfect cubes (e.g. 830584) one can guess

their two-digit cube roots (e.g. 94) by estimating how big a number is (how many 1000s) and

looking at its unit digit. I hoped this would help her get a sense of numbers. She was unable to

follow the procedure and had difficulty with the sense of numbers. (She is not alone).

She starts to program to find the cube roots of numbers. Her initial goal is to print the first 10

cubes. Power is not an available expression and she needs to construct the expression for a

number (variable). In time she creates result=number×number×number . She increments the

number each time and puts it in a loop. To view the results, I ask her to add a delay of 1

second after each operation. I ask her to notice the numbers, but she doesn't find a pattern. She

then changes the loop condition to keep running till the result becomes a large cube given in

her book. Now, she is interested in where the program stops and intently looks at the results.

She soon figures out when she is too far and needs to wait for the result and asks to reduce the

time between calculations. I tell her she could change the program for fewer calculations, but

retain the time after a calculation to see the result.

She decides to skip numbers in her program. I connect it to the original process and ask her to

change in steps of 10 (10, 20, 30, etc) till the result is too large, go to the previous step and

then go in steps of 1. She implements this as two loops: first loop in steps of 10 and second

3 3

loop in steps of 1. It takes her time and she makes errors, but she understands what she is

trying to do and debugs it with known cube numbers and their cube roots.

To use the program she generates a random two-digit number (feature available in Scratch)

and uses its cube as the target (variable). This time when she looks at the steps of 10 she

notices the last three digits are 000s. She then notices that the non-zero digits have the same

pattern as cubes of single-digit numbers. When the second loop starts the numbers are much

more complicated. I ask her to focus on the units place. Now, she notices a pattern e.g. 1 in

the units gives 1 in the units of the cube (213 = 9261). Similarly, 4 gives 4, 5 gives 5, 6 gives

6, 9 gives 9. The others were flips 3 with 7 (433 = 79507 and 573=185193) and 2 with 8.

She starts working this out systematically as the computer does and now she gets it. In time

she skips the 'unnecessary' steps and gets straight to the cube of the 10s before and (to check

the 10s after) and then writes the number including the units. She makes the program a game

that accepts inputs to check her answer. The program still works through all the steps for her

to cross check her thinking and then announces if the result is accurate. In the next class she

works out 50 cube roots in an hour in her notebook and checks with the computer. She gets

one wrong and understands why that one confused her.

She now revisits squares wanting to do something similar there. Though the numbers are

smaller the process is more involved as it has the mapping in the units place and is not one-to-

one (e.g. units place 4 and 6 result in a square with units place 6) and you need to estimate

which square it is closer to. However, she masters it by following a similar process.

In this example we see that it is possible to learn a higher order skill – sense of numbers,

logically thinking with learning a procedural skill and developing an understanding of the

concept. We also notice that in the process of creation the learning becomes her own.

Multiplication and Corresponding Division Stories

Much of science that children encounter in school is one quantity (distance) as a product of

the two others (speed and time). Other examples are density, mass, volume; mass, force,

acceleration; changing units. The simplest form of these boil down to:
Multiplication story: 1 box has 6 apples, how many apples are there in 4 boxes.

Division story 1: There are 24 apples in 4 boxes, how many apples are there in one box.

Division story 2: There are 6 apples in 1 box, how many such boxes are needed for 24 apples.

Rahul (6th grade) seemed to get the concept, but was unable to retain it. He started to create a

program to animate his story. Scratch provides a stage and you need to bring in characters that

do their part. He needed to think of a concrete example and stay with the example while he

programmed the appropriate apples and boxes to appear and disappear based on his story. He

needed to synchronize the timing of his voice and the corresponding display. The rigor of

staying with a problem helped him to retain this concrete story. Knowing one concrete

example well helped him abstract other stories. The process of personalization of learning

through the process is so strong that at the end of the year when we displayed the work of

children, not just Rahul, but every child could recognize their work by just the initial stage

even before we started playing their demonstrations.

Circles

We planned to use the process of personalizing the projects for adding fractions as well. In

visualizing fractions the children decided to use a circle to represent the whole (as it’s obvious

3 4

when something is missing). We added a constraint: children would need to instruct

(program) the computer to draw rather than draw themselves by hand.

Scratch has bare bones pen commands allowing you to draw from point-to-point (lines with

coordinates) or lines of arbitrary length at arbitrary angles from a point. How then do you get

a circle (more accurately a good approximation of a circle) with lines?

With making of the fractions project in mind, the children started to tinker with various shapes

with lines that would resemble a circle. This led to interesting conversations about what

fundamentally a circle is, something that is constantly changing its angle. They then broke the

full angle (360) into angle chunks, moving a constant distance and rotating by that angle

chunk (engineering). Depending on the size of the chunk they got various regular polygons.

Starting from equilateral triangles to squares to pentagons and so on finally settling at a shape

with large enough sides to look like a circle. Eventually, a simple program repeat 360 {move

1 step ; rotate 1 degree} gave them a very good approximation of a circle.

Fractions

Given that we had spent quite some time on this wonderful deviation we decided to

experiment with a higher level thought process for playing with functions and created a base

function for drawing a fraction with various inputs. The idea of controlling where the fraction

should be drawn, and how big it should be was a significant exercise in their understanding of

coordinate geometry. The last screen of such an animation by Ahalya (7th Grade is shown

below).

Fig.1: Final Image of one animation project on fraction additions.

Children who participated in that session were required to think in a different way about

circles and were asked to examine fractions in detail. A few months after making their

animations the children were tested on adding fractions. All of them knew that you couldn't

just add the numerators and denominators, most were able to create equivalent fractions to

add fractions, and, on being prompted half were also able to resort to LCM to add fractions

which is the expected procedure.

Percentages, Algebra, Compound Interest

The conceptual understanding of abstract concepts were better understood by children when

they were asked to demonstrate their understanding visually. For percentages they created

programs to make pie charts of the time spent on activities in a day. For this they took the

hours and framed fractions of the day, scaled angles with different colors of the pie and also

3 5

represented percentages. This helped them link multiple independently dealt with concepts at

the same time. The process of debugging (fixing errors) helped them face the assumptions and

misconceptions they had e.g. Jaya had assumed that now that she was working with

percentages fractions needed to be scaled by 100 for everything including angles. Only part of

her circle appears densely colored. She debugs her program and realizes that even though they

are dealing with percentages it does not scale angles automatically from 360 degrees. This

helped Jaya realize that what she knew before had not suddenly become irrelevant now.

Data Handling

The fundamental art in having to explain something to a computer is that children need to be

clear about the procedure and break it down into simple steps they can code. Equally

importantly, they need to create test cases that they are absolutely confident of. The meta-

cognition of average children in middle school is low and being able to say they are absolutely

sure of something, especially a new concept, gets them to stretch beyond their comfort zone.

They start trying to understand the concept to come up with a simple test case e.g. one group

of children were trying to get an average in their book exactly right, in another group a child

started a discussion on what would happen if all the data was the same since this was easy to

generate on the computer, indeed this resulted in a much more trivial test case, but more

involved understanding of the concept. As before, plotting the results helped them estimate

averages even before calculating them. Further, Scratch's ability to create large random data

helped them notice the law of large numbers by themselves i.e. average of randomly

distributed data between two numbers tends to be the average of the two numbers.

Observations

As children explain a procedure step-by-step through programming it helps clarify these

procedures in their minds. Further, it fundamentally changes their relationship with

computers. In the year-end surveys one of the children remarked that only now she

understood how much effort and intelligence it goes into making the computer look smart.

Other than the appreciation of what it takes to do something in real life, the import was that

she no longer considered the computer smart in itself. Computer usage in schools is generally

an extension of an authority figure which is always correct e.g. softwares that explain

something to children or test them (openly or through 'games'). In these cases, the computer is

all knowing and always right and children have nothing to offer to it but 'right' answers. It

provides no scope for invention, questioning or possibility of higher order learning.

MAKING, TINKERING, ENGINEERING

Conversations which lead to learning in deeper mathematics can come up in many making

situations. As part of the study on the moon the children in 7th grade decided to make a time-

scaled animation of the earth spinning on its axis, going around the sun with the moon

rotating around the earth. They also decided that they wanted earth to travel in an ellipse

rather than a circle. This started an exploration of how to get an ellipse rather than a circle.

One solution took them through attempting to extract this information by solving the equation

that Geogebra gave. The idea that a two dimensional expression e.g. 1.37x2+2.25y2-61798.1

that they did not know how to process could be solved by the computer by selecting a value of

y and sweeping x till the expression became zero was fascinating for them. Since they were

drawing pixels they only needed the integer part of the solutions, but a curve does not only

have integer solutions. They needed to use the fact that expressions change sign when it steps

over the solution (expression changes sign as it crosses zero). They developed a healthy

3 6

respect for integer multiplication when they realized that this could use the product of two

successive results to locate a solution (engineering).

The children tinkered around with the limits of using these sweeps and realized that in closed

curves there are no solutions beyond a y value point for any value of x. The earth was now

rotating around the Sun. For a sum that is generally simple getting an answer is enough,

however, in making you can gauge the quality of work and there is always room for progress.

The children noticed that the earth seemed to be speeding up the upper extremes (y was being

stepped linearly and the slope was close to zero) . They further tinkered and made multiple

ranges putting points closer together as they came to the extreme to compensate for change of

slope.

Another group of children simply tinkered around longer to come up with a different solution

by visualizing the circle as getting stretched in the center to create an ellipse. They divided the

angles between a smaller and bigger circle to achieve the same result. The code went

something like this repeat 45 {move 1, rotate 1}, repeat 90 {move 2, rotate 1}, repeat 45

{move 1, rotate 1}, and so on for the other half of the ellipse.

DIFFICULTIES AND ASSESSMENTS

Most children we worked with had already been using the computer to play (educational)

games, watch videos or work with Paint. Their initial excitement for using the computer had

died out and there was resistance to intellectual work using the computer. What helped us was

that children still enjoyed making and tinkering (as suggested by their surveys). The drift to

engineering depends on the ability of the instructors to create a situation where children want

to create a project and struggle to find a solution with tinkering and want more predictability

in their work e.g. making a circle can be accomplished through tinkering, but making a set of

specific circles needs understanding about perimeter and radius of circles.

Initially, the time projects took concerned us. We gave it time since the children were

engaged and challenged. Teachers spend a lot of time repeating concepts that the children

apparently learnt and have 'forgotten', when in fact, the children had not really learnt it

(Brooks & Brooks, 1993). We found that children retained concepts they learnt over time.

The biggest difficulty is actually that we, as teachers, want to teach (and instruct) but that

often steals the most important learning from the child. In time we learnt to notice when we

were too keen to teach and learnt to step back to allow the children to struggle and learn on

their own.

One group of girls had created a wind chime, calculated 22.5% lengths of the pipes,

hacksawed the steel pipes, used a power drill to drill holes and complete their product. When

we did surveys with the children at the end of the year we had expected this to be the top of

their list of accomplishments. It was hence a surprise when Ahalya indicated that the fractions

program (Fig. 1) was her finest work. I reminded her of the wind chime, she smiled and said

that it was a great experience, but the fractions were her best work. It helped me realize that in

this increasingly technological world children see the virtual world as something tangible and

real.

CONCLUSIONS

Programming allows an important interaction between a child and a computer altering

fundamentally the equation for being a user to being a programmer, from being a receiver to

being a creator. Programming is significantly different from using passive media that converts

3 7

the computer to a personalized television, or enables children to play games on the computer

as users only. This fosters the assumption that the computer is always right and we/they are

always playing catch-up. We must let children program the computer instead of attempting to

program the children through computers (Papert, 1993).

Making projects (through programming) can be a way for children to demonstrate their

learning and offer alternatives to examinations as the only form of assessment. This also

offers an opportunity for self-evaluation and constant progress.

Programming a computer helps children learn conceptual ideas because they need to break it

down into small bites for a computer to follow. It also helps them visualize abstract concepts.

They can also create their own games to develop rigor.

Rural children are growing up with an increasing access to technology and programming can

be meaningfully used with them to support their higher order learning and mathematical

thinking while addressing curricular aspects in a more meaningful way. This paper is a case

study intended to show that the 330,000 schools across the country that have computer

resources could use this resource in a creative way to develop higher order reasoning skills

through discovery and invention while addressing useful academic skills.

Acknowledgements

We would like to thank Aura Semiconductor Pvt. Ltd., Udavi School and Isai Ambalam

School for their support and the children for their desire to learn.

References

Papert, S. (1986). Constructionism: A new Opportunity for Elementary Science Education, M.I.T,

Media Laboratory, Epistemology and Learning Group (NSF Grant Proposal).

Papert, S. (1993). Mindstorms Children, Computers, and Powerful Ideas. Basic Books.

Papert, S. & Harel, I. (1991) Constructionism. Ablex Publishing Corporation.

Pea, R. & Kurland, D.M. (1984), "On the Cognitive Effects of Learning Computer Programming,"

New Ideas in Psychology, 2, pp. 137-168.

Pal.Y et al., (2005). National Curricular Framework, National Council of Educational Research and

Training [pdf]. Retrieved from http://www.ncert.nic.in/rightside/links/nc_framework.html

Resnick, M. et al., (Nov 2009). Scratch: Programming for All. Communications of the ACM.

Aurobindo, S. (1910) The Human Mind, Karmayogin.

J.S. Bruner (1960), The Process of Education, Harvard University Press

Martinez, S.L., & Gary, S. (2012). Invent to Learn: Making, Tinkering, and Engineering in the

Classroom, Constructing Modern Knowledge Press.

Gupta, A. (Nov 2014). Simple Toys Make Science Fun. Unicef – State of The World's Children.

District Information System for Education(DISE) (2014), Elementary Education in India: Where are

we? [pdf]. Retrieved from http://dise.in/Downloads/Elementary-STRC-2013-14/All-India.pdf

Ranganathan, S (2014) Program to encourage critical thinking in children – 2013-2014. Grant report

by Udavi School to SAIIER.

Mukunda, K.V. (2009) What Did You Ask at School Today, Harper Collins.

Brooks, J.G. and Brooks, M.G. (1993) The case for constructivist classrooms, Association for

supervision of curriculum development Alexandria, Virginia

3 8

http://www.ncert.nic.in/rightside/links/nc_framework.html
http://dise.in/Downloads/Elementary-STRC-2013-14/All-India.pdf

