Complex Number

A complex number (\mathbf{z}) is a number that can be expressed in the form $\mathrm{x}+\mathrm{iy}$, where x and y are real numbers and i is the imaginary unit.

$$
i=\sqrt{-1}
$$

That is,
$x=\operatorname{Re}(z) \quad(\operatorname{Re}=\operatorname{Real})$
$x y=\operatorname{Im}(z)(\operatorname{Im}=$ Imaginary)

$$
\operatorname{Re}(\mathrm{z})+\operatorname{Im}(\mathrm{z}) . \mathrm{i}
$$

A real number a can be regarded as a complex number $a+0 i$ whose imaginary part is 0 . A purely imaginary number bi is a complex number $0+b i$ whose real part is zero. It is common to write a for $a+0 i$
and bi for $0+b i$.
Moreover, when the imaginary part is negative, it is common to write $a-b i$ with $b>$ 0 instead of $a+(-b) i$, for example $3-4 i$ instead of $3+(-4) i$.

Lets take a complex number (z) 4+3i. Plot it in the $\mathrm{x}-\mathrm{y}$ axis. Then multiply it with 'i' \& plot the result. (w is $(-3,4)$. Continue it with two more times \& plot the points. Now you can see, the four points lies in four different quartinates.

The first \& the third and the second \& the fourth are equal in magnitude $\&$ opposite in direction. This shows $1^{\text {st }} \& 2^{\text {nd }}, 2^{\text {nd }} \& 3^{\text {rd }}, 3^{\text {rd }} \& 4^{\text {th }}$ are 90 degree apart.

Thus a complex number (i) can capable of seperate two same signals, 90 degree apart if multipying one with 'i'.

Figure 1.1

