Circuit Analysis:

let us take the above circuit into consideration, with three nodes namely:

- vin
- v_{1}
- v_{2}
and \mathbf{i} is the current passing through them.

1. Considering node v_{2} :
$v_{2}=i R_{1}$
(Equation 1)
2. Now at node v_{1} :
$v_{1}=v_{2}+i s L_{2}$
(Equation 2)
$v_{1}=i\left(R_{1}+s L_{2}\right)$
3. To determine vin :
$\operatorname{vin}=s L_{1}\left(i+\frac{v_{1}}{\frac{1}{s C_{1}}}\right)+v_{1}$
(Equation 4)
$\operatorname{vin}=s L_{1}\left(i+i\left(R_{1}+s L_{2}\right) s C_{1}\right)+i\left(R_{1}+s L_{2}\right)$
(Equation 5)
$v i n=i\left(s L_{1}\left(1+s C_{1} R_{1}+s^{2} C_{1} L_{2}\right)+R_{1}+s L_{2}\right)$
4. The current \mathbf{i} can be obtained from the equation $\mathbf{6}$:

$$
\begin{equation*}
i=\frac{\operatorname{vin}}{\left(s L_{1}+s^{2} C_{1} R_{1} L_{1}+s^{3} C_{1} L_{1} L_{2}+R_{1}+s L_{2}\right)} \tag{Equation7}
\end{equation*}
$$

5. v_{1} and v_{2} in terms of vin :
$v_{2}=\frac{\operatorname{vin} R_{1}}{\left(s L_{1}+s^{2} C_{1} R_{1} L_{1}+s^{3} C_{1} L_{1} L_{2}+R_{1}+s L_{2}\right)}$
(Equation 8)
$v_{1}=\frac{\operatorname{vin}\left(R_{1}+s L_{2}\right)}{\left(s L_{1}+s^{2} C_{1} R_{1} L_{1}+s^{3} C_{1} L_{1} L_{2}+R_{1}+s L_{2}\right)}$
