
 Software Development Class -
Session 2
 Version Control using Git

 The case for version control

 Variety is in nature of things.
 Be it a story, a drawing, an aeroplane or a piece of software, there would be multiple versions of
the same.
 All creative processes involve iterating and switching between various versions
 … and in case of software design it involves high collaboration too
 Softwares and the underlying code goes through many versions before the finality, if ever there is
 Tools are required to easily switch between versions and gather different pieces of code to make
one software

 A version control system enables

 storing multiple versions of a code project
 switching between multiple versions

1

2

3

4

5

1

2

3

4

5

1

2

3

 viewing differences between multiple versions
 combining pieces from individual team members

 Git is a free and open source distributed version control system designed to handle everything from
small to very large projects with speed and efficiency.
 - https://git-scm.com/

 How does git work?

 In any folder where our project lies, we ask git to track changes
 After every few set of changes, we ask git to store these changes for us, we give it a message to
remember what changes we made.
 git then stores these changes, gives a unique ID to refer to this set of changes latter.
 If we would like to go to a previous version, we ask git to take us to that version. It then updates
our working files to that version state.

 Git Basics

 Setup

 git --version

 git config --global user.name "Sravan"

 git config --global user.email "sravfeyn@gmail.com"

 git config --global core.editor vim

 git config --list

 git init # makes a folder into a repostory

 git status # can use anytime, shows what's going on with the repositor

y

 git add <path to files> # adds to staging area

 git commit -m "Implemented a user login page"

 git status

 Brancing

 git branch

 git branch login_bug

 git checkout login_bug

 Git for collaboration
 A git server

 Hosts git repositories
 Allows multiple users to push/pull changes to the repository
 Access permission for users
 Additionally, servers like github.com (bitbucket.org, gitlab) provide better UI for code reviews, pull
requests etc

https://git-scm.com/

1

2

3

 git remote add origin git@github.com:sravfeyn/ps2.git

 git push -u origin master

 git pull origin friends_feature

 git terminology

 Repository: The folder containing current working version and all other versions of a code base.
 Commit: The incremental set of changes that we ask git to store
 Staging area
 Branch
 Remote

 Git reference and tutorials

 https://git-scm.com/doc
 https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
 https://help.github.com/articles/set-up-git/
 https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
 https://try.github.io/

 Testing

 The case for testing

 A facility of General Electric for jet engine testing.

 Make sure what we make works
 … works in almost all scenarios

https://git-scm.com/doc
https://git-scm.com/doc
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://help.github.com/articles/set-up-git/
https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
https://try.github.io/

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

1

2

 Helps identify components that are buggy
 Trust a piece of code without reviewing it a lot

 Testing types

 User Interface testing
 Functional testing
 Code testing

 Manual testing
 Unit tests
 Integration tests
 Test driven development

 Writing tests

 A very basic way of writing

 Write a test in a file called test.py
 Run python test.py

 def test_max_function():

 actual = max_element([1, 4, 5, 3, 2])

 expected = 5

 if actual == expected:

 pass

 else:

 raise Exception("Incorrect answer"

 # Repeat above for each test case

 test_max_function()

 A little better way

 def test_max_function():

 actual = max_element([1, 4, 5, 3, 2])

 expected = 5

 assert actual == expected

 # Repeat for each test case

 test_max_function()

 def test_user_age():

 user = create_user(dob=datetime.date(1990, 7, 7) # expensive opera

tion

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

 actual_age = get_user_age(user)

 assert actual_age == 27

 # Repeat for various date-0f-births

 def test_max_function():

 actual = max_element([1, 4, 5, 3, 2])

 expected = 5

 assert actual == expected

 # Repeat for each test case

 test_max_function()

 test_user_age()

 Case for a testing library

 Running multiple tests with one command
 Pre-setup before tests can be run, deleting data after,
 Debugging tests

 Python unittest library

 https://docs.python.org/3/library/unittest.html

 import unittest

 class TestStringMethods(unittest.TestCase):

 def test_upper(self):

 self.assertEqual('foo'.upper(), 'FOO')

 def test_isupper(self):

 self.assertTrue('FOO'.isupper())

 self.assertFalse('Foo'.isupper())

 def test_split(self):

 s = 'hello world'

 self.assertEqual(s.split(), ['hello', 'world'])

 # check that s.split fails when the separator is not a string

 with self.assertRaises(TypeError):

 s.split(2)

 if __name__ == '__main__':

https://docs.python.org/3/library/unittest.html

20 unittest.main()

 More readings
 http://pythontesting.net/framework/unittest/unittest-introduction/

 Hangman assignment walkthrough

 Using git and testing

 Django Introduction

 How does a website or a mobile app work?
 What all happens when you load google.com on your browser?

 The usual components

 An HTTP server
 URL rules written in a server specific language
 Server programs that respond to URLs
 Looking up or storing data in database using SQL scripts.
 Sending HTML back

 Django takes care of all these things in a neat way by letting us write all these things in Python

 URL rules are declared in a python program
 SQL queries are done using Django’s ORM model in Python without writing SQL
 Lets us use wide variety of template frameworks to easily write HTML
 Implements an MVC pattern
 Provides common utilities to work with like HTML Forms, authentication, admin site etc

 https://docs.djangoproject.com/en/2.0/intro/overview/

http://pythontesting.net/framework/unittest/unittest-introduction/
https://docs.djangoproject.com/en/2.0/intro/overview/

